The data reduction for Lab \#3 is outlined below.
When the system is in the choked flow condition (i.e. $P_{\text {tank }}>P_{\text {star }}$) the equation in the course notes (by Prof. Chen) on page 65 is valid:

$$
\begin{equation*}
\mathrm{t}=\left[\frac{\mathrm{V}_{\text {tank }}}{\left(\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{O}}}\right) \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\text {nozzle }}}\right] \cdot\left[\frac{2}{\mathrm{k}-1} \cdot\left(\frac{\mathrm{k}+1}{2}\right)^{\frac{\mathrm{k}+1}{2 \cdot(\mathrm{k}-1)}}\right] \cdot\left[\left(\frac{\mathrm{P}_{\mathrm{o}}}{\left.\left.\left.\left.\mathrm{P}_{\text {tank }}\right)^{\frac{(\mathrm{k}-1)}{2 \cdot \mathrm{k}}}\right)^{-1}-1\right] .\right] .}\right.\right. \tag{A}
\end{equation*}
$$

where
$t=$ the time from the start of the blow-down process
$C_{D}=$ the discharge coefficient
$\mathrm{V}_{\text {tank }}=$ the volume of the tank $\left(230 \mathrm{in}^{3}\right)$
$R=$ gas constant for air
$k=$ specific heat ratio for air
$A_{\text {nozzle }}=$ area of the nozzle (Diameters are: \#65 -> 0.035", \#70 -> 0.028", \#75 -> 0.021", \#80 -> 0.0135" long tube -> 1 mm)
$T_{0}=$ starting temperature of process (K)
$\mathrm{P}_{\mathrm{o}}=$ starting pressure of process
$P_{\text {tank }}=$ tank pressure during process

The variables are presented in the example calculations below. See page 62-65 of the notes for the theoretical development.

The gas (air) properties are: $\quad \mathrm{k}:=1.4$

$$
\mathrm{R}:=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

The measured atmospheric pressure is: $\quad \mathrm{P}_{\mathrm{a}}:=14.9 \cdot \mathrm{psi} \quad \mathrm{P}_{\mathrm{a}}=1.027319 \times 10^{5} \mathrm{~Pa}$

From converging nozzle relationships, when the tank pressure is higher than the critical pressure, $P_{\text {star }}$, the flow rate is the choked mass flow rate. The critical pressure $P_{\text {star }}$ can be determined from

$$
\frac{\mathrm{P}_{\mathrm{a}}}{\mathrm{P}_{\text {star }}}=\left(\frac{2}{\mathrm{k}+1}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \text { or } \quad \mathrm{P}_{\text {star }}=\mathrm{P}_{\mathrm{a}} \cdot\left[\left[\frac{2}{(\mathrm{k}+1)}\right]^{\left[\frac{\mathrm{k}}{(\mathrm{k}-1)}\right]}\right]^{-1}
$$

The critical pressure is $\quad P_{\text {star }}=28.204644 \mathrm{psi}$
The measured temperature and pressure at the start of the blow-down process are:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{O}}:=(25.18+273.15) \cdot \mathrm{K} & \mathrm{~T}_{\mathrm{O}}=298.33 \\
\mathrm{P}_{\mathrm{O}}:=(57.37+1.158) \cdot \mathrm{psi} & \mathrm{P}_{\mathrm{O}}=4.035364 \times 10^{5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}
\end{aligned}
$$

Tank and nozzle variables are given:

$$
\mathrm{V}_{\text {tank }}:=230 \cdot \mathrm{in}^{3} \quad \mathrm{~V}_{\text {tank }}=3.769025 \times 10^{-3} \mathrm{~m}^{3} \quad \mathrm{~V}_{\mathrm{tank}}=3.769025 \mathrm{~L}
$$

Consider nozzle \#65

$$
\mathrm{D}_{\text {nozzle }}:=0.035 \cdot \text { in } \quad D_{\text {nozzle }}=8.89 \times 10^{-4} \mathrm{~m}
$$

$$
\mathrm{A}_{\text {nozzle }}:=\pi \cdot \frac{\mathrm{D}_{\text {nozzle }}{ }^{2}}{4} \quad \mathrm{~A}_{\text {nozzle }}=6.207167 \times 10^{-7} \mathrm{~m}^{2} \quad \mathrm{~A}_{\text {nozzle }}=9.621128 \times 10^{-4} \mathrm{in}^{2}
$$

Time to unchoked flow, where $P=P_{\text {star }}$ (call this $t_{\text {star }}$), it is really just an indicator of the end of choked flow. After this point in time the flow is no longer choked, and this assumption in the theoretical development is violated.

Procedure for finding C_{D} :

1) Use the measure pressure as " $P_{\text {star }}$ " and the time from the start of the process as " $t_{\text {star }}$ " in the $P_{\text {star }}$ vs. $\mathrm{t}_{\text {star }}$ equation.
2) Using $P_{\text {star }}$, $t_{\text {star }}$ (measured P and t) and the other variables, find C_{D} by solving the equation below for C_{D}

$$
\begin{aligned}
& t_{\text {star }}=\left[\frac{V_{\text {tank }}}{\left(\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{0}}\right) \cdot C_{D} \cdot \mathrm{~A}_{\text {nozzle }}}\right] \cdot\left[\frac{2}{\mathrm{k}-1} \cdot\left(\frac{\mathrm{k}+1}{2}\right)^{\frac{\mathrm{k}+1}{2 \cdot(\mathrm{k}-1)}} \| \cdot\left(\left(\frac{\mathrm{P}_{0}}{\mathrm{P}_{\text {star }}}\right)^{\frac{(k-1)}{2 \cdot k}}-1\right]\right. \\
& \text { Set } \quad \text { Const }:=\frac{2}{\mathrm{k}-1} \cdot\left(\frac{\mathrm{k}+1}{2}\right)^{\frac{\mathrm{k}+1}{2 \cdot(\mathrm{k}-1)}} \quad \text { Const }=8.64
\end{aligned}
$$

Therefore

$$
\mathrm{t}_{\text {star }}=\left[\frac{\mathrm{V}_{\text {tank }}}{\left(\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{0}}\right) \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\text {nozzle }}}\right] \cdot \text { Const } \cdot\left[\left(\frac{\left.\left.\left.\mathrm{P}_{0}\right)_{\mathrm{P}_{\text {star }}}\right)^{\frac{(\mathrm{k}-1)}{2 \cdot \mathrm{k}}}-1\right], ~}{}\right.\right.
$$

Solving for the discharge coefficient, $C_{D} \quad$ at $\quad t_{\text {star }}:=21 \cdot \sec$

$$
C_{D}:=V_{\text {tank }} \cdot \operatorname{Const} \cdot \frac{\left[\left(\frac{P_{0}}{P_{\text {star }}}\right)^{\left[\frac{1}{2} \cdot \frac{(k-1)}{k}\right]}-1\right]}{\left[\mathrm{t}_{\text {star }}\left(\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{0}} \cdot \mathrm{~A}_{\text {nozzle }}\right)\right]} \quad \quad C_{D}=0.79315
$$

Hint: note the values for some of the individual terms to help you troubleshoot your data reduction.

$$
\begin{aligned}
& \text { Const2 := } \\
& \left.\sqrt{\left(\frac{P_{0}}{P_{\text {star }}}\right)^{\frac{(k-1)}{2 \cdot k}}-1}\right] \quad \text { Const2 }=0.10992 \\
& \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{o}}}=346.221019 \mathrm{~ms}^{-1} \quad \\
& \frac{\mathrm{~V}_{\text {tank }}}{\mathrm{A}_{\text {nozzle }}}=6.072053 \times 10^{3} \mathrm{~m} \quad \text { for nozzle \#65. }
\end{aligned}
$$

In general, expect CD to be from 0.6 to 0.9 . Values greater than 1 and less than 0 are impossible. If the value is 1 there are no losses due to friction etc. The smaller the value the greater the losses.

For a good discussion of this see Zucrow and Hoffman (Gas Dynamics, Vol. 1, John Wiley and Sons, 1976, pp.187-200). There you will find the figure shown below, where the discharge coefficient for unchoked flow is shown to increase with increasing tank stagnation pressure up to the choked condition. As given by the theory, the C_{D} is constant (essentially according to the measurements) in the choked condition for the three nozzles considered.

Figure 4.16. Experimental discharge coefficients for conical converging nozzles

